Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561429

RESUMEN

Control of the angular momentum of light at the nanoscale is critical for many applications of subwavelength photonics, such as high-capacity optical communications devices, super-resolution imaging and optical trapping. However, conventional approaches to generate optical vortices suffer from either low efficiency or relatively large device footprints. Here we show a new strategy for vortex generation at the nanoscale that surpasses single-pixel phase control. We reveal that interaction between neighbouring nanopillars of a meta-quadrumer can tailor both the intensity and phase of the transmitted light. Consequently, a subwavelength nanopillar quadrumer is sufficient to cover a 2lπ phase change, thus efficiently converting incident light into high-purity optical vortices with different topological charges l. Benefiting from the nanoscale footprint of the meta-quadrumers, we demonstrate high-density vortex beam arrays and high-dimensional information encryption, bringing a new degree of freedom to many designs of meta-devices.

2.
Nat Commun ; 15(1): 2944, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580656

RESUMEN

Due to its unique intensity distribution, self-acceleration, and beam self-healing properties, Airy beam holds great potential for optical wireless communications in challenging channels, such as underwater environments. As a vital part of 6G wireless network, the Internet of Underwater Things requires high-stability, low-latency, and high-capacity underwater wireless optical communication (UWOC). Currently, the primary challenge of UWOC lies in the prevalent time-varying and complex channel characteristics. Conventional blue Gaussian beam-based systems face difficulties in underwater randomly perturbed links. In this work, we report a full-color circular auto-focusing Airy beams metasurface transmitter for reliable, large-capacity and long-distance UWOC links. The metasurface is designed to exhibits high polarization conversion efficiency over a wide band (440-640 nm), enabling an increased data transmission rate of 91% and reliable 4 K video transmission in wavelength division multiplexing (WDM) based UWOC data link. The successful application of this metasurface in challenging UWOC links establishes a foundation for underwater interconnection scenarios in 6G communication.

3.
Nat Commun ; 14(1): 6410, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828022

RESUMEN

We introduce a new paradigm for generating high-purity vortex beams with metasurfaces. By applying optical neural networks to a system of cascaded phase-only metasurfaces, we demonstrate the efficient generation of high-quality Laguerre-Gaussian (LG) vortex modes. Our approach is based on two metasurfaces where one metasurface redistributes the intensity profile of light in accord with Rayleigh-Sommerfeld diffraction rules, and then the second metasurface matches the required phases for the vortex beams. Consequently, we generate high-purity LGp,l optical modes with record-high Laguerre polynomial orders p = 10 and l = 200, and with the purity in p, l and relative conversion efficiency as 96.71%, 85.47%, and 70.48%, respectively. Our engineered cascaded metasurfaces suppress greatly the backward reflection with a ratio exceeding -17 dB. Such higher-order optical vortices with multiple orthogonal states can revolutionize next-generation optical information processing.

4.
Nano Lett ; 23(17): 8256-8263, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651617

RESUMEN

Miniature two-photon microscopy has emerged as a powerful technique for investigating brain activity in freely moving animals. Ongoing research objectives include reducing probe weight and minimizing animal behavior constraints caused by probe attachment. Employing dielectric metalenses, which enable the use of sizable optical components in flat device structures while maintaining imaging resolution, is a promising solution for addressing these challenges. In this study, we designed and fabricated a titanium dioxide metalens with a wavelength of 920 nm and a high aspect ratio. Furthermore, a meta-optic two-photon microscope weighing 1.36 g was developed. This meta-optic probe has a lateral resolution of 0.92 µm and an axial resolution of 18.08 µm. Experimentally, two-photon imaging of mouse brain structures in vivo was also demonstrated. The flat dielectric metalens technique holds promising opportunities for high-performance integrated miniature nonlinear microscopy and endomicroscopy platforms in the biomedical field.


Asunto(s)
Microscopía , Dispositivos Ópticos , Animales , Ratones , Fotones
5.
Nano Lett ; 22(10): 3993-3999, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35510871

RESUMEN

On-chip integrated orbital angular momentum (OAM) sorting is of great importance in tackling the severe challenge of exponential growth in data traffic. Despite the continuous success, current demultiplexing techniques either scarify efficiency dramatically or lose the compactness of a system. Here we experimentally demonstrate an ultracompact OAM sorter using TiO2 metasurfaces integrated onto a complementary metal-oxide-semiconductor (CMOS) camera. By utilizing the propagation phases, we transfer the unitary transformation theory in bulky systems into two TiO2 metasurfaces, responsible for the functions of log-polar transformation and fan-out beam copying and focusing as well as the functions of phase correction and Fourier transform. The flatform metasurface doublet enables one to integrate the OAM sorter onto a camera chip. Consequently, OAM beams with topological charges of m = -3 to 3 were separated by a CMOS camera with an average crosstalk of -6.43 dB. This approach shall shed light on next-generation OAM modes processing.


Asunto(s)
Óxidos , Semiconductores
6.
Adv Mater ; 34(14): e2109255, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35128735

RESUMEN

On-chip integrated micro- and nanoscale vortex lasers are key elements for addressing the exponentially growing demand for information capacity. Although tunable vortex microlasers have been reported, each laser pulse still possesses one particular topological charge and requires additional multiplexing. In this study, the simultaneous generation of coherent laser arrays with different topological charges by combining metalenses with semiconductor microlasers is demonstrated. A TiO2 vortex metalens converts two orbital angular momentum beams into the same diffraction-limit spot with opposite circular polarizations through spin-to-orbital conversion. Consequently, the microlaser emission at the focal spot, which can be decomposed into two circularly polarized beams, is collimated into vortex microlaser beams with two different topological charges through a time-reversal process. This concept is extended to a 2 × 2 metalens array by introducing off-axis terms, and eight topological charges are produced simultaneously. This research is a significant step toward the on-chip integration of micro- and nanolasers.

7.
Nat Commun ; 12(1): 5560, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548490

RESUMEN

Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650-1000 nm with an average efficiency of 77.1%-88.5% and a numerical aperture of 0.24-0.1. This research paves a solid step towards practical applications of flat photonics.


Asunto(s)
Rayos Infrarrojos , Lentes , Imagen Óptica/instrumentación , Titanio/química , Diseño de Equipo , Nanoestructuras/química , Óptica y Fotónica , Propiedades de Superficie
8.
Light Sci Appl ; 10(1): 52, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692330

RESUMEN

Metalenses have emerged as a new optical element or system in recent years, showing superior performance and abundant applications. However, the phase distribution of a metalens has not been measured directly up to now, hindering further quantitative evaluation of its performance. We have developed an interferometric imaging phase measurement system to measure the phase distribution of a metalens by taking only one photo of the interference pattern. Based on the measured phase distribution, we analyse the negative chromatic aberration effect of monochromatic metalenses and propose a feature size of metalenses. Different sensitivities of the phase response to wavelength between the Pancharatnam-Berry phase-based metalens and propagation phase-reliant metalens are directly observed in the experiment. Furthermore, through phase distribution analysis, it is found that the distance between the measured metalens and the brightest spot of focusing will deviate from the focal length when the metalens has a low nominal numerical aperture, even though the metalens is ideal without any fabrication error. We also use the measured phase distribution to quantitatively characterise the imaging performance of the metalens. Our phase measurement system will help not only designers optimise the designs of metalenses but also fabricants distinguish defects to improve the fabrication process, which will pave the way for metalenses in industrial applications.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117438, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31377684

RESUMEN

Raman microspectroscopy as a non-invasive and label-free technique was applied to diagnose the early stage differentiation of mouse embryonic stem cells. The differentiated and undifferentiated embryonic bodies (EBs) were cultured using handing drop method by the control of Leukemia Inhibitory Factor (LIF). Raman spectra of the periphery cells of differentiated EBs (PrE cells) and those of the interior of undifferentiated EBs (ES cells) were obtained to diagnose the stem cells of different differentiation. It was found from the spectra that the protein content increased as the cells differentiated. Principal component analysis (PCA) was carried out to further analyze the differences between ES cells and PrE cells. The first three principle components contained 98.19% from the total variance. Characteristic bands of ES and PrE cells were chosen to acquire Raman images of two cells according to the results of PCA. In the Raman images, PrE cells had a clear and bright outline in the peripheral areas while ES cells were difficult to identify, this could be a distinct characteristic to discriminate them. The result of the Raman images was consistent with the biological agreement that the differentiated cells were distributed around the periphery.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias de Ratones/citología , Espectrometría Raman/métodos , Animales , Células Cultivadas , Ratones , Análisis de Componente Principal
10.
J Sep Sci ; 42(13): 2280-2288, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31038284

RESUMEN

Narrow peaks are important to high-resolution and high-speed separation of DNA fragments by capillary electrophoresis and microchip capillary electrophoresis. Detection cell length is one of the broadening factors, which is often ignored in experiments. However, is it always safe to neglect detection cell length under any condition? To answer this question, we investigated the influence of detection cell length by simulation and experiments. A parameter named as detection cell length ratio was proposed to directly compare the detection cell length and the spatial length of sample band. Electrophoretic peaks generated by various detection cell length ratios were analyzed. A simple rule to evaluate the peak broadening due to detection cell length was obtained. The current states of the detection cell length of detection system and their reliabilities in capillary electrophoresis and microchip capillary electrophoresis were analyzed. Microchip capillary electrophoresis detection with an ultra-small detection cell length of 0.36 µm was easily achieved by using an image sensor.


Asunto(s)
ADN/aislamiento & purificación , ADN/química , Electroforesis Capilar , Electroforesis por Microchip , Microscopía Fluorescente
11.
Appl Opt ; 57(27): 7891-7894, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30462055

RESUMEN

A high numerical aperture multifocal metalens was proposed based on well-designed Pancharatnam-Berry phase optical elements. Both circularly and linearly polarized incident lights could be tightly focused into diffraction-limited focal spots. Right and left circularly polarized focal spots could be realized simultaneously by illuminating a linearly polarized beam. The highest numerical aperture reached to 0.84 with full width at half-maximum of 263 nm. Moreover, we also presented a metalens whose optical elements are hybrid arranged and the metalens can realize spin-independent focusing with a numerical aperture of 0.8. The presented metalens has significant potential applications in particles manipulation and high-resolution imaging.

12.
Opt Lett ; 43(19): 4594-4597, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272691

RESUMEN

We proposed and experimentally demonstrated a novel method for generating a chiral beam with controllable intensity twist lobes and direction by using annular subzone (AS) vortex phase plates, which is composed of different ASs and different vortex phases. The phase distribution continuity between two adjacent ASs determines the intensity distribution of the light field. The rotated direction of the optical filed is determined by the topological charge sign. The number of intensity twist lobes is determined by the topological charge gradient between adjacent subzones. The experimental results show that this method is effective and practical, which offers broad potential applications in particle manipulation, chiral microstructure fabrication, and optical tweezers.

13.
J Sep Sci ; 40(9): 2054-2061, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28252250

RESUMEN

A novel method named effective length calibration method has been developed to process the fluorescence signal detected by charge-coupled device during capillary electrophoresis. The new method treated each pixel as an individual point detector, and effectively binned a large number of pixels into a final electropherogram without losing the narrow detection window defined by a single pixel. Capillary electrophoresis separations of DNA were carried out and detected by charge-coupled device and conventional detector (photomultiplier tube). Detection properties including signal-to-noise ratio, peak width, detection frequency, and tilt of detector were investigated. It was found that the new method achieved much higher signal-to-noise ratio and smaller peak width than the conventional detector did. A Detection width of 0.5 µm was easily achieved.


Asunto(s)
ADN/análisis , Electroforesis Capilar , Fluorescencia , Calibración
14.
Talanta ; 160: 425-430, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27591633

RESUMEN

High-speed capillary electrophoresis (HSCE) is a promising technology applied in ultra-rapid and high-performance analysis of biomolecules (such as nucleic acids, protein). In present study, the short-end capillary electrophoresis coupled with one novel space domain internal standard method (SDIS) was employed for the rapid and simultaneous analysis of specific genes from three oral bacteria (Porphyromonas gingivalis (P.g), Treponema denticola (T.d) and Tannerela forsythia (T.f)). The reliability, reproducibility and accuracy properties of above mentioned SDIS method were investigated in detail. The results showed the target gene fragments of P.g, T.d and T.f could be precisely, fast identified and quantitated within 95s via present short-end CE system. The analyte concentration and the ratio of space domain signals (between target sample and internal standard sample) featured a well linear relationship calculated via SDIS method. And the correlation coefficients R(2) and detection limits for P.g, T.d, T.f genes were 0.9855, 0.9896, 0.9969 and 0.077, 0.114 and 0.098ng/µl, respectively.


Asunto(s)
ADN Bacteriano/análisis , Boca/microbiología , Porphyromonas gingivalis/genética , Tannerella forsythia/genética , Treponema denticola/genética , Electroforesis Capilar , Genes Bacterianos , Humanos , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados
15.
J Sep Sci ; 38(20): 3638-44, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26289302

RESUMEN

Programmed step electric field strength is a simple-to-use technique that has already been reported to be effective to enhance the efficiency or speed of DNA electrophoresis. However, a global understanding and the details of this technique are still vague. In this paper, we investigated the influence of programmed step electric field strength by theoretical calculation and concentrated on a basic format named as two-step electric field strength. Both subtypes of two-step electric field strength conditions were considered. The important parameters, such as peak spacing, peak width, resolution, and migration time, were calculated in theory to understand the performance of DNA electrophoresis under programmed step electric field strength. The influence of two-step electric field strength on DNA electrophoresis was clearly revealed on a diagram of resolution versus migration time. Both resolution and speed of DNA electrophoresis under two-step electric field strength conditions are simply expressed by the shape of curves in the diagram. The possible shapes of curve were explored by calculation and shown in this paper. The subtype II of two-step electric field strength brings drastic variation on the resolution. Its limitations of enhancement and deterioration of resolution were predicted in theory.


Asunto(s)
ADN/aislamiento & purificación , Campos Electromagnéticos , ADN/química , Electroforesis Capilar
16.
J Colloid Interface Sci ; 376(1): 327-30, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22475201

RESUMEN

Photovoltaic properties of narrow-bandgap Cu(2)SnS(3) (CTS) are studied for the first time by employing a superstrate solar cell structure of fluorine-doped tin oxide (FTO) glass/TiO(2)/In(2)S(3)/CTS/Mo. The structural, optical, and electronic characteristics of the CTS make it great potential as bottom cell absorber material for low-cost thin film tandem solar cell application. Furthermore, by inserting a thin low temperature deposited In(2)S(3) layer between the In(2)S(3) buffer layer and the CTS absorber layer, an enhancement in the performance of the solar cell can be achieved, leading to about 75% improvement (η=1.92%) over the unmodified device (η=1.10%).


Asunto(s)
Cobre/química , Suministros de Energía Eléctrica , Compuestos de Estaño/química , Flúor/química , Energía Solar
17.
J Chromatogr A ; 1229: 274-9, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22310278

RESUMEN

Pulsed field capillary electrophoresis (PFCE) is a predominant technique to cope with difficulties in resolving large DNA strands, yet it is still unclear whether pulsed electric field is effective for the separation of higher mass RNA. In this paper we focused on the role of pulsed electric field in large RNA fragments analysis by comparing RNA separation performance in PFCE with that in constant field CE. Separation performance in terms of migration mobility, plate numbers, resolution, and selectivity has been tested for the analysis of RNA from 0.1 to 10.0 kilo nucleotide (knt) under different electrophoretic conditions. Denaturation, important to obtain uniform and identifiable peaks, was accomplished by heating the sample in 4.0M urea prior to analysis and the presence of 4.0M urea in the electrophoresis buffer. Results demonstrate that unlike DNA in PFCE, the pulsed electric field mainly affects the separation performance of RNA between 0.4 and 2.0 knt. The migration mobility of long RNA fragments is not a strong function of modulation depth and pulsed frequency. Moreover, the logarithm of RNA mobility is almost inversely proportional to the logarithm of molecule size up to 6.0 knt with correlation coefficient higher than 0.99 in all the polymer concentrations measured here. Resonance frequency of RNA in PFCE was also observed. While these initial experiments show no distinct advantages of using PFCE for RNA separation, they do take further step toward characterizing the migration behavior of RNA under pulsed field conditions.


Asunto(s)
Electroforesis Capilar/métodos , Electroforesis en Gel de Campo Pulsado/métodos , ARN/química , ARN/aislamiento & purificación , Ácido Acético/química , Celulosa/análogos & derivados , ADN/química , ADN/aislamiento & purificación , Tamaño de la Partícula , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...